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A model of two interacting (chemically different) linear polymer chains is solved 
exactly using the real-space renormalization group transformation on a family 
of Sierpinski gasket type fractals and on a truncated 4-simplex lattice. The mem- 
bers of the family of the Sierpinski gasket-type fractals are characterized by an 
integer scale factor b which runs from 2 to ~ .  The Hausdorff dimension dF of 
these fractals tends to 2 from below as b ~ ~ .  We calculate the contact expo- 
nent y for the transition from the state of segregation to a state in which the two 
chains are entangled for b =  2-5. Using arguments based on the finite-size 
scaling theory, we show that for b---, oo, y = 2 - v ( b ) d F ,  where v is the end-to- 
end distance exponent of a chain. For a truncated 4-simplex lattice it is shown 
that the system of two chains either remains in a state in which these chains are 
intermingled in such a way that they cannot be told apart, in the sense that the 
chemical difference between the polymer chains completely drop out of the ther- 
modynamics of the system, or in a state in which they are either zipped or 
entangled. We show the region of existence of these different phases separated 
by tricritical lines. The value of the contact exponent y is calculated at the tri- 
critical points. 

KEY WORDS: Segregation; entanglement; tricritical line; contact exponent; 
finite-size scaling; fractals. 

1. I N T R O D U C T I O N  

In order to explain the entanglement and segregation of polymer chains in 
a solution a lattice model of two interacting self-avoiding-walks (SAWs) 
has recently been proposed, cl) In this model W~tlks were allowed to cross 
each other at most once on a lattice point and a lattice bond was allowed 
to be occupied at most by a step of one or by both walks. This model 
hereinafter referred to as a model of two interacting crossed walks or 
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TICWs, represents a physical system of two chemically different interacting 
charge neutral homo polymer chains in a solution in which like monomers 
repel each other while unlike monomers interact with a relatively short- 
range attraction. The crossing of walks at a lattice point corresponds to the 
situation in which the length which characterizes the attractions between 
unlike monomers is less than that of the repulsion between like monomers. 
Such an attraction may arise due to formation of chemical bonds between 
unlike monomers or due to solvent mediated interactions. 

The model of TICWs was solved exactly for a truncated 3-simplex lat- 
tice using a real space.renormalization group (RSRG) transformation. (l) 
The phase diagram which emerged from this calculation has a tricritical 
point for a transition from a state of segregation in which chains are 
separated from each other without any overlap to a state in which the two 
chain get entangled. In the vicinity of this point a cross-over regime is 
observed. The mean number of monomers M of one chain in contact with 
other chain at the transition point was found to behave as 

M o o N  y (1.1) 

where N is the total number of monomers in a chain and y is the contact 
exponent. 

One of the motivations of this paper is to solve the model of TICWs 
and calculate the value of y for the members of a family of Sierpinski 
gasket type fractals embedded in a 2-dimensional space. The members of 
this family are characterized by a scale parameter b which runs from 2 
to ~ .  The fractal dimension dF of a member of the family is written in 
terms of b as (2) 

log[ b(~ ] 
de=  (1.2) 

log b 

For the spectral dimension d we, however, do not have such a simple 
expression. For large b one has the following asymptotic series (3) 

~(b)=2  loglogb ( 1 ) 
- log------b- + terms of order 10g b (1.3) 

One therefore sees from Eqs. (1.2) and (1.3) that as b is increased the frac- 
tal and spectral dimensions increase monotonically and tend towards 2 
from below and for b ~ oo the lattice resembles a 2-d plane. 

The bulk critical exponents of a SAW have been evaluated for the 
members of this family of fractals using the RSRG method by Elezovic e t  

al. (4) for 2 ~<b ~ 8 and by the Monte Carlo method for 2 <~b ~< 100. (5) For 
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large b the finite size scaling arguments have been used  (6) to calculate the 
value of the exponents v (associated with the end to end distance) and ~, 
(associated with the total number of distinct SAWs). It is shown that while 
v approaches to its 2-d value from below as b--, oo, 7 is about three times 
(133/43) larger than the corresponding Euclidean value of 43/32. It is there- 
fore interesting to examine the behavior of y as a function of b for this 
family of lattices. 

The other motivation stems from our earlier study (7) of a model of two 
interacting self-attracting-self-avoiding walks (SASAWs) with the con- 
straints that these walks are not allowed to cross each other at any lattice 
point and a lattice bond can be occupied at most once by a step of any one 
walk. This model has been referred to as a model of two interacting walks 
or TlWs. This model has been solved exactly using the RSRG transforma- 
tions for a family of truncated n-simplex lattices with 4 ~< n ~< 6. Here, we 
solve the model of TICWs for a truncated 4-simplex lattice and compare 
our results with the results found for TlWs in ref. 7 and show that the 
latter is a special class of the former. 

The paper is organized as follows. In Section 2 we describe the real 
space renormalization group (RSRG) method to calculate the contact 
exponents for the model of TICWs for a fractal lattice. We report results 
for the members of a family of Sierpinski gasket-type fractal lattice. In Sec- 
tion 3 we consider a truncated 4-simplex lattice and solve the model of 
TICWs and compare the result with that of a model of TIWs considered 
in a previous paper. (7) The paper ends with a brief discussion given in 
Section 4. 

2. REAL SPACE RENORMALIZATION GROUP CALCULATION 
OF CONTACT EXPONENT y FOR A FAMILY OF SIERPINSKI 
GASKET-TYPE FRACTALS 

We consider the model of TICWs on a family of Sierpinski gasket-type 
fractals and associate contact energy Ec with each crossing of walks. For 
notational simplification we denote these walks hereinafter as PI and P2. 
The generating function of our interest is 

G(xl, x2, co, t)= Z x~x~ 2~ (2.1) 
all walks 

where NI(N2) is the number of steps (monomers) in a walk (polymer) 
PI(P2) and Xl(X2) denotes the fugacity weight attached to each step of 
walk PI(P2). RI is the total number of sites visited by both the walks and 
R2 is number of pairs of sites which are adjacent to the doubly visited sites 
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Fig. 1. Diagrams representing the four restricted generating functions for the chains 
(indicated by smooth (P~) and wiggle (P2) lines) on a Sierpinski gasket. 

and each site of the pair is visited by a different walk. co =exp(Ec/T) and 
t =exp(Et/T) where Ec, as mentioned above, is the contact energy and E, 
is the energy associated with an unoccupied lattice bond adjacent to the 
doubly visited site. 

From the, generating function the average length of a polymer chain 
(say P~) is calculated using the relation 

OlnG 
(N1)  = x l  (2.2) 

0x~ 

Similarly the number of monomers in contact with each other (or the mean 
number of sites visited by both walks) can be calculated from the relation 

OlnG 
< M )  = 0 9 - - - - - -  (2.3) 

(9o9 

Calculation of G for any member of the lattice considered here requires 
four restricted partition functions shown in Fig. 1. These partition functions 
are defined recursively as a weighted sum over all configurations for a 
given stage of the iterative construction of the fractal lattice. The recursions 
express the restricted functions for the (r + 1)th-order lattice in terms of 
those of the rth generation one. The variables in these equations are just 
the partial generating functions corresponding to different polymer con- 
figurations for a given size of the fractal lattice. 

To illustrate the procedure of calculating the contact exponent using 
the RSRG approach and to set the notations we consider a lattice with 
scale parameter b = 3. The 'recursion relations for this lattice are easily 
found and can be written as 

Ar+l = A3 + 3A4 + A5 + 2A6 (2.4) 

B,.+ 1 = B3 + 3B4 + B5 + 2B6 (2.5) 
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Cr + 1 = C3 -b 3C 4 q- C 5 q- 2C 6 + 4ABCeD + 2CD 5 

+ 2CDZ(A + A2B + A3B + A B  2 + B 3) 

+ DZ(A2B + A 3B + AB  e + A B  3 + A C 2 

+ BC u + 2AC 3 + 2BC 3) + 2D3(AB + A2C + Bzc )  

+ 2(A 2 + B2)(D 4 + C3D) 

D,+l = D(Ae(B z + AB  e + 2 B C +  C 3 + B 3) 

+ B2(2AC+ C3)) + 2DZ(2AZB 2 + A z c  z + B2C 2) 

+ D3(A(A 2 + B + 2B z + C u) + B(2A 2 + B 2 + C2)) 

+ D4(2A 2 + 2B 2 + C 2) + DS(A + B + 2C + D) 

+ CD3(A + A z + B + B e + AB) + 2A2B2C2 

+ C2D(A z + A 3 + B z + B 3 + 2AB) 

(2.6) 

(2.7) 

Here and below we adopt a notational simplification in which the index r 
is dropped from the right hand side of the recursion relations. 

It may be emphasized here that the recursion relations written above 
are exact for the model of TICWs. The fact that recursion relation for A(B) 
is independent of B(A), C and D is the consequence of the definition of the 
model. This means that the model of TICWs as defined above is unable to 
take into account the effect of one SAW on the self-avoidance of the other 
SAW. This will, however, not affect the essential features of the phase 
diagram to be calculated below. This is because in the dilute solution the 
criticality of a chain does not get affected due to the presence of other 
chain. 

The recursion relation of A(B)  which is the weight of an r + 1 th order 
triangle in which chain Px(P2) enters in from one of the corner vertices and 
comes out from the other, is independent of B(A),  C and D. The effects of 
interactions between two chains are taken through C and D as illustrated 
in Fig. 2. Since the interaction between two chains are restricted to bonds 
within a first order unit of the fractal lattice, co and t do not appear 
explicitly in the recursion equations. They appear only in the initial value 
of the generating functions given below. By universality one, however, 
expects that the qualitative phase diagrams and critical exponent of this 
system are same as the one with interactions which are of much longer 
length scales but smaller than the correlation length which diverges at the 
critical point. 
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Fig. 2. Some of the diagrams (out of 98) representing the recursion relations for the two 
functions (C and D) given by Eqs. (2.6) and (2.7) for a Sierpinski gasket-type fractal with 
b=3. 

In Fig. 2 we illustrate the configuration of order r which appear in 
Eqs. (2.4)-(2.7). The starting weight for these functions are 

A o = x z  

Bo = x 2  

C 0 ~-- x I x 2 c o  2 

(2.8) 

and 

Do = x~ X2tco 

In the asymptotic limit both N, and N 2 tend to infinity, and therefore, 
in that situation x~ = x2 and A,.+ ~ = B,.+ ~. From these equations we get the 
following three nontrivial fixed points. 

(i) The fixed point (A* =B*,  C*, D*)=(0.5511,  0, 0) corresponds 
to the bulk segregated state. Linearization of the recursion relations around 
this fixed point gives one eigenvalue greater than one, 2~ = 3.9919 which 
gives the radius of gyration exponent v=0.7936 tS~ of a chain. For 
X=Xc(co)=0.5511 this fixed point is reached for all values of co <coc(t).  

(ii) The fixed point (A * = B*, C*, D*) = (0, 0.5511, 0) is reached for 
all co > co c(t) and x <Xc(co). This fixed point corresponds to a state in 
which both chains are entangled with each other. In some approximate 
sense this state is reminiscent of a "double helix" kind of structure of a 
DNA molecule. This is because of the fact that in this state both chains are 
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coupled together (see Fig. 1) and behave like flexible ladder which is 
similar to the double stranded helix kind structure of DNA molecule. The 
local structure of the entangled polymer chains may, however, be very dif- 
ferent from the helical structure of a DNA molecule. Therefore, the 
similarity drawn here between the DNA double helix kind of structure and 
that of entangled polymer chains are only at length scales much larger than 
the helix pitch of the DNA molecule. 

Linearization around this fixed point yields two eigenvalues ( ~  = 3.9919) 
with v=0.7936. Hence, in this state the two chains entangled with each 
other in such a way that they behave as one composite chain having the 
same radius of gyration exponent as that of one chain. 

(iii) At 09 = co c(t), Xc(CO) is still equal to its bulk value. The fixed 
point which is reached with this value of CO is (A* =B*,  C*, D * ) =  
(0.5511, 0.3037, 0.3037). Linearization of the recursion relations about this 
fixed point leads two eigenvalues greater than one, 2~ =3.9919 and 
22 = 2.7267. We identify this fixed point as a tricritical point of transition 
from a state of segregation to a state of entanglement. The value of the 
contact exponent is 

In '~2 
Y - l n  21 

- 0.7246 

We now extend this method to other lattices of this family. As the 
value of b increases, however, the number of possible configurations of 
different walks increases rapidly. Therefore, the extension of this method to 
much larger values of b appears difficult as the computer time needed to 
generate the exact recursion relations by direct enumeration increases as 
exp(b2). We summarize results for 2 ~< b ~< 5 in Table I in which we list the 
fixed points corresponding to the tricritical points of the system, the values 
of two eigenvalues which are greater than one and values of the exponents 
v, 0t and y. The values of v and 0c given in the table are in agreement with 
those reported earlier, ca' 5, s) 

Table I 
, L , , , , 111 ,1 , , , , 

Y 
b d f  A * = B *  C* = D *  At, 2c v Exact ot = 2 - d :  v 

2 1.5849 0.6180 0.3819 2.3819 1.9159 0.7986 0.7491 0.7342 
3 1.6309 0.5511 0.3037 3.9919 2.7267 0.7936 0.7246 0.7056 
4 1.6609 0.5063 0.2563 5.8029 3.4957 0.7884 0.7117 0.6905 
5 1.6826 0.4745 0.2251 7.7898 4.2443 0.7840 0.7042 0.6808 

i i i i 



988 Kumar and Singh 

It may be of interest to note that at the fixed points corresponding to 
the tricritical points of the systems, the value of C * =  D* is just square 
roots of A * =  B* for all values of b listed in Table 1. This is because of the 
fact that at the tricritical points the effects of attractive and repulsive inter- 
actions mutually cancel each other and the number of configurations in C 
and D are just the square of the number of configurations of A and B, 
respectively, for any value of b. 

We also find that the values of y decrease monotonically as b is 
increased. This behavior can be understood from the fact that as the 
dimensionality of the space increases the walks have less chance to cross 
each other. 

We can estimate the value of y for b ~ oo using following arguments 
which are based on the finite-size scaling theory. 

Since in the model of TICWs the effect of one SAW on the self- 
avoidance of the other SAW is neglected and the walks are allowed to cross 
each other, the distribution of monomers remains isotropic as in the case 
of a single chain. Using the finite-size scaling theory, it has been shown that 
for self-avoiding-walks at large b, there are approximately b~/"(ln b) 2v-l/2v 
number of steps. (6) Since these are "dense SAWs" as their scaled length 
tends to infinity, they fill the space with nearly uniform densities. (6,~2) 
Therefore the number of contacts with the chain P2 is given as average 
density x number of steps in P t 

K2bl/,,(ln b)2V-l/2v 
�9 bl/V(ln b) 2~- 1/2~ (2.9) 

bar 

where/s is a constant. This leads to the following simple expression for 
y(b) 

r 
y(b) = 2 --dFv [ 1 

~-2-dFv(b) 

where from (6) 

2 v -  1 In In b 

2 In b 
t- terms of order 1/In b] 

(2.10) 

1 1 2 v - l l n l n b  1 
- - -  ! f- terms of order ln b 
v(b) v 2v In b 

From above equations it is evident that as b ~ oo 

y-~ 2 -  vdr= 1/2 (2.11) 
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where v = 3/4 and dF= 2. The above Eq. (2.11) can be derived assuming a 
very simple argument as follows. Let a polymer of chain length 1 interacts 
with the other chain of same length. The average number of contacts. 

12 ,~ b 2 / v - a F  
M ~ -~-, 

Where 1 = b ~/" is taken. Since M,,.  b y/" we have 

y =  2-- vdF 

However to see how y depends on b, one needs Eq. (2.10). Since 2 v - 1 / 2  
is positive for v = 3/4, y(b) approaches the 1/2 value monotonically as b is 
increased. 

This analysis shows that the exponent y is equal to ~ for b = oo. As we 
know, 0c is associated with the number of closed loops formed by a SAW 
in the asymptotic limit. At the tricritical point the two chains therefore 
intermingle in such a way that the number of crossing of chains scale in a 
same way as that the loops formed by a chain. At smaller values of b, 
however, the value of y is somewhat larger than that of 0~. 

3. RESULTS FOR THE MODEL OF TlCWS FOR A 
TRUNCATED 4-SIMPLEX LATTICE 

The truncated 4-simplex lattice belongs to the universality class of a 
3-dimensional Sierpinski gasket and has widely been used to study configura- 
tional properties of both the linear and branched polymers in different 
environmental conditions. The models leading to coil-globule transition, (9) 
surface adsorption and collapse transition, (~~ interpenetration and zipped 
states of two interacting chains, tT) etc., have been solved exactly. 

The basic geometrical unit of construction of a 4-simplex lattice is a 
tetrahedron with 4-comer vertices and bonds between every pair of ver- 
tices. Each vertex connected through a direct bond is termed as a nearest 
neighbor. The value of dF, d and the connectivity constant (for a SAW) p 
are 2.0, 1.5474.., 2.2866.., respectively. 

As is shown in Fig. 3 we need 13 restricted partition functions for com- 
plete descriptions of the generating functions of our interest. Since here we 
confine ourselves to a regime where both chains are in a swollen state we 
neglect terms corresponding to configurations of P, Q, F, F', G, G', H and 
I (see Fig. 4). We keep a term E while similar looking term P and Q have 
been dropped. This is justified on the ground that at a fixed point which 
represents a swollen state of both chains, the value corresponding to these 
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Fig. 3. Diagrams representing the thirteen restricted partition functions for two chains on a 
4-simplex lattice, F'  and G' have configurations in which chains are interchanged from that 
of F and G respectively. 

configurations are nearly zero. Therefore, their contributions to the eigen- 
values of our interest are negligible. To be more specific, let us consider the 
case of one walk (say P 1) on the 4-simplex lattice. The fixed point corres- 
ponding to the swollen state of the walk is (A *, P*) = (0.4294..., 0.04998...). 
The linearization of the recursion relations about this fixed point leads to 
an eigenvalue (2h) equal to 2.7965 and the exponent v = 0.674. (~') But when 
we put P = 0  in the recursion relations the above values get changed to 
(A*, P*) = (0.4406, 0), 2b=2.7504 and v=0.690. Thus the error in the 
value of v arising due to neglect of terms involving P amount to 2.3 % .(~) 
We therefore expect error of this order in the value of y calculated below. 

We are now left with 5 restricted partition functions; the configuration 
A(B) corresponds to the swollen state of chain P,(P2) and other configura- 
tions C, D and E correspond to inter-chain correlations. At first look one 
may wonder as to why P and Q are neglected whereas E is retained. 
However, on a second reflection one may easily realise that while P(Q) 
corresponds to intra-chain correlations and is responsible for the collapsed 
phase of chain P~(P2), E corresponds to interchain correlations and is 
responsible for entangling the chains. 
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The recursion relations which we consider are 

At+ 1 = A2 + 2A3 + 2A4 

Br + l = B2 + 2B3 + 2B4 

C r +  1 = C 2 dr- 2C 3 + 2C 4 + 2D 4 + 2D2[(A + B ) + ( A  2 + B 2) 

+ 2C(A + B ) +  AB]  

Dr+ ~ = ABD( 1 + 2E + C) + (A + B ) ( A B D  + CD + DE 2 + 2D 3 

+ CXD) + (A 2 + 9 2 ) ( C D  + DE) + 2(C + E) D 3 + D 3 

E,. + 1 - A2B 2 + 2ABE(A  + B) + 2D2(A 2 + B 2) +4D2E(A  + B) 

+ 4ABD 2 + 2D 4 + 2E 4 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

The initial weight given to these functions are 

A o - - X  l 

Bo -- 'X2 

Co -- x l  x2co 2 

Oo = x l x2 tco 

Eo = X l  X2 u2 

(3.6) 

Here u represents the nearest neighbor interaction between unlike monomers. 
In a swollen state of a chain the effect of intra-chain nearest neighbor 
attraction (in the lattice) is only to change the value of the fugacity and 
therefore is not considered. 

We distinguish between the two situations: A situation in which chains 
are not allowed to cross, i.e. co = 0 and the other in which co > 0. 

(A) The case co = 0  corresponds to the situation where walks repel 
each other at short distance also and do not allow them to cross each 
other. Therefore this situation is analogous to the one studied in ref. 7. The 
critical behaviors of the system are described by the following fixed points. 

(i) The fixed point (A* =B*, C* =D*,  E*)=(0.4406 .... ,0, 0.0573...) 
is reached for all values of'u <uc(xc)=  1.8577... (see Fig. 4). In ref. 7 we 
referred this state to as a state of interpenetration. Here the two walks are 
intermingled with each other in such a way that they cannot be told apart 
i.e. a walk cannot distinguish between itself and the other walk. This means 
that the monomers of chains are distributed uniformly without any distinc- 
tion as if they belong to one chain. The system does not distinguish 

822/89/5-6-7 
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u o 

Fig. 4. The-complete x-o~-u phase diagram at t =0.5 for the truncated 4-simplex lattice. 
Region marked by L E and C represent, respectively, the intermingled, zipped and inter- 
penetrated (roped) states of two interacting chains. The tricritical line U cCOc separates the 
intermingled and zipped states of the system. The dashed-dotted line TI 7'2 separates regions 
of zipped and interpenetrated (roped) states of the system. The line T! 7"2 appears to meet 
U c W c  line at T~ where eo---co~-- 1 and u = u ~  = 1.8147. It also appears to meet the line u c p  

at p on ~ -  0 surface. 

between intrapolymer and interpolymer interactions. In this regime there- 
fore, the chemical difference between polymer chains P~ and P2 completely 
drops out of the thermodynamics of the solution as they follow the swollen 
state statistics and their critical exponents remain the same. Hereinafter we 
denote this state of two polymer chains by I ( see Fig. 4). 

(ii) The fixed point (A* = B*, C* = D*, E*) = (0.4406 .... 0, 0.6700...) 
is reached when U=Uc(Xc). Linearization of Eqs. (3.1)-(3.5) about this 
point gives two distinct eigenvalues greater than one; 2b = 2.7304... which 
corresponds to a swollen state of a walk and 2c=2.7484... which 
corresponds to the zipped state of the two walks. Using these eigenvalues 
the values of the contact exponent y is found from the relation 

In 2c 
Y-- ln2b  ~- 1 

This value of y is somewhat higher than the exact value 0.9447 as reported 
in ref. 7. Here we find an error of about 6 %. This, as explained above, is 
due to neglect of certain restricted partition functions from the recursion 
relations. 
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(iii) The fixed point ( A * = B * , C * = D * , E * ) = ( O , O , O . 7 9 6 7 )  is 
reached when x < X c and u > U c(o9 = 0). The value of x and u for which 
this fixed point is reached is shown by line u cp in Fig. 4. The line remains 
in the co = 0 plane. The fixed point, however, corresponds to a state when 
the two chains exist only in a zipped form and not separately. Since x < Xc, 
the individual chains have not attained their criticality. 

(B) For the case co > 0 the critical behavior of the system is described 
by the following fixed points. 

(iv) When u < Uc ( =  1.8577) x = X c  ( = 0 . 4 4 0 6 )  and 09 < ogc(U) 

system evolves to a fixed point (A* = B*, C* = D*, E*) = (0.4406, 0, 0.0573) 
corresponding to the state I discussed in (i) above. The plane I in Fig. 4 
represents the value of u and 09 at x = Xc for which the intermingled state (I) 
of two polymer chains exists. 

(v) When u = u c, x = X c and o9 = ogc(U) the system evolves to a 
fixed point ( A * = B * , C * = D * = E * ) = ( 0 . 4 4 0 6 , 0 . 1 9 4 1 . . . ) .  Linearization 
about this fixed point gives two eigenvalues greater than one, i.e., 
2b = 2.7306... and 2c = 1.9476... These eigenvalues lead to the value of y 
equal to 0.6635. 

In Fig. 4 a dashed line ogcUc represents the value of o9 =ogc(u) at 
x = Xc  for which this fixed point is reached. This is a tricritical line and 
separate the phases indicated by I and E. The E phase represents the state 
in which the two chains are zipped together. 

The line Ucogc meets the plane o9=0 at point (Uc, Xc) which itself is 
a tricritical point. Since at this point o9 = 0, the configurations C and D do 
not survive at any length scale whereas for any other point on the line 
Ucogc these configurations exist at all length scales. 

The point T~ on this line corresponds the value of ogc (u = 1.8147) = 1. 
For u < 1.8147 and ogc(U)> 1, E phase does not exist and the line Ucogc 

separates the states I and C. Here C represents a phase in which two chains 
are entangled. 

(vi) For x < X c  and u < U c  the system attains the following con- 
figurations. 

(a) When X'c(U) < x < Xc  and u < Uc = 1.8577 the fixed point to 
which the system evolves is (A* = B*, C* = D*, E*) = (0, 0, 0.7967). This 
fixed point as discussed in i iii) corresponds to a configuration in which a 
zipped long chain in formed. The individual chains for this case are non- 
critical. 

(b) For x <x~:(u) and w>  W'c(U) the fixed point attained by the 
system is (A* = B*, C*, D*, E*) = (0, 0.4406, 0, 0). This corresponds to the 
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configuration in which the two chains are entangled. We refer to this state 
of the chains as a C phase. In this case also the individual chains are non- 
critical. 

(c) The fixed point (A* =B*, C*, D* = E * ) = ( 0 ,  0.4406, 0, 0.7967) 
is reached for x=x'c(U) and co = 09~.(u). The line Tl 7"2 in Fig. 4 represents 
the value of o9 and x for given u < U c for which this fixed point is reached. 
Along the line T~/'2 the two uncoupled phases E and C coexist. The line 
T~ T2 appears to meet with the tricritical line UcWc at point T~. 

4. DISCUSSIONS 

The problem with which we have been concerned here is to predict the 
effect of attraction between unlike monomers of two chemically different 
charge neutral homo polymers on their configurations. The system is shown 
to exist in a configuration of segregation in which they are separated from 
each other without any overlap, or in a state in which the two chains are 
either zipped together or entangled depending upon the attraction. 

The system is represented by two interacting SAWs in such a way that 
these walks may cross each other at most once on a lattice point and a lat- 
tice bond may be occupied by at most a step of one or both walks, The 
crossing of chains on a lattice point is due to an attractive interaction 
between unlike monomers which characteristic length is shorter than that 
of the repulsion between like monomers. The model involves three 
parameters viz. fugacity x of a step of a walk, 09=exp(Ec/T) and 
t = exp(Et/T) where Ec and Et, as noted above, are the contact energy and 
energy associated with an unoccupied lattice bond adjacent to a doubly 
visited site. All results given above are for t = 0.5. The value of the contact 
exponent y tabulated above for the Sierpinski gasket type fractals shows 
that it decreases monotonically as the parameter b increases. 

It is also shown that for large b, y = 2 - v ( b ) d r  and therefore, equals 
to 0c, i.e. the number of contacts formed between chains scale in the same 
way as the number of closed loops formed by a SAW in its asymptotic 
limit. This result was found by using a phenomenological approach based 
on the finite-size-scaling theory in which one is concerned with the change 
in the renormalization equation as scale factor is changed. This differs from 
the usual case, where the renormalization equations are unchanged as the 
lengths are rescaled but the coupling constants are changed so that correla- 
tion functions of a Hamiltonian at a length scale L, are related to those the 
transformed Hamiltonian at length scale Lib. In the treatment given above, 
one determines how the recursion equation for the b-fractal are related to 
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those of (say) 2b-fractal. This analysis clearly indicates that y = ~ is satisfied 
only for a lattice for which the resealing parameter b approaches infinity. 

The model which we solved for a 4-simplex lattice has an additional 
parameter, viz., u = exp(E./T) where E,  is the attraction energy between a 
pair of unlike monomers occupying nearest neighbor lattice sites. It is 
shown that the two attraction parameters o9 and u compete with each 
other. While o9 favors formation of entangled configuration of two chains, 
u, on the other hand, favors zipping of the chains. The phase diagram 
plotted in Fig. 4 shows the region of existence of these phases. 
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